Datos personales

Mi foto
Elizarraras Jose Luis, Gutierrez Juan Manuel, Montoya Katherine, Ramos Carlos Alberto

domingo, 19 de septiembre de 2010

ALGEBRA BOOLEANA

INTRODUCCION
La álgebras booleana, estudiada por primera vez en detalle por George Boole , constituye un área de las matemáticas que ha pasado a ocupar un lugar prominente con el advenimiento de la computadora digital. Son usadas ampliamente en el diseño de circuitos de distribución y computadoras, y sus aplicaciones van en aumento en muchas otras áreas. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware, y que está formado por los componentes electrónicos de la máquina, se trabaja con diferencias de tensión, las cuales generan funciones que son calculadas por los circuitos que forman el nivel. Éstas funciones, en la etapa de diseña del hardware, son interpretadas como funciones de boole. 
En el presente trabajo se intenta dar una definición de lo que es un álgebra de boole; se tratan las funciones booleanas, haciendo una correlación con las fórmulas proposicionales. Asimismo, se plantean dos formas canónicas de las funciones booleanas, que son útiles para varios propósitos, tales como el de determinar si dos expresiones representan o no la misma función. Pero para otros propósitos son a menudo engorrosas, por tener más operaciones que las necesarias. Particularmente, cuando estamos construyendo los circuitos electrónicos con que implementar funciones booleanas, el problema de determinar una expresión mínima para una función es a menudo crucial. No resultan de la misma eficiencia en dinero y tiempo, principalmente, dos funciones las cuales calculan lo mismo pero donde una tiene menos variables y lo hace en menortiempo. Como solución a este problema, se plantea un método de simplificación, que hace uso de unos diagramas especiales llamados mapas o diagramas de Karnaugh, y el cual tiene la limitación de poder trabajar adecuadamente sólo con pocas variables. 
Se realizan estas presentaciones con el fin de demostrar la afinidad existente entre el álgebra de boole y la lógica proposicional, y con el objeto de cimentar el procedimiento de simplificación presentado en la lógica de proposiciones.


ALGEBRA BOOLENA
El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " º " definido en éste juego de valores acepta un par de entradas y produce un solo valor booleano, por ejemplo, el operador booleano AND acepta dos entradas booleanas y produce una sola salida booleana.
Para cualquier sistema algebraico existen una serie de postulados iniciales, de aquí se pueden deducir reglas adicionales, teoremas y otras propiedadesdel sistema, el álgebra booleana a menudo emplea los siguientes postulados:
  • Cerrado. El sistema booleano se considera cerrado con respecto a un operador binario si para cada par de valores booleanos se produce un solo resultado booleano.
  • Conmutativo. Se dice que un operador binario " º " es conmutativo si A º B = B º A para todos los posibles valores de A y B.
  • Asociativo. Se dice que un operador binario " º " es asociativo si (A º B) º C = A º (B º C) para todos los valores booleanos A, B, y C.
  • Distributivo. Dos operadores binarios " º " y " % " son distributivos si A º (B % C) = (A º B) % (A º C) para todos los valores booleanos A, B, y C.
  • Identidad. Un valor booleano I se dice que es un elemento de identidad con respecto a un operador binario " º " si A º I = A.
  • Inverso. Un valor booleano I es un elemento inverso con respecto a un operador booleano " º " si A º I = B, y B es diferente de A, es decir, B es el valor opuesto de A.
Para nuestros propósitos basaremos el álgebra booleana en el siguiente juego de operadores y valores:
- Los dos posibles valores en el sistema booleano son cero y uno, a menudo llamaremos a éstos valores respectivamente como falso y verdadero.
- El símbolo ·  representa la operación lógica AND. Cuando se utilicen nombres de variables de una sola letra se eliminará el símbolo ·,  por lo tanto AB representa la operación lógica AND entre las variables A y B, a esto también le llamamos el producto entre A y B.
- El símbolo "+" representa la operación lógica OR, decimos que A+B es la operación lógica OR entre A y B, también llamada la suma de A y B.
- El complemento lógico, negación ó NOT es un operador unitario, en éste texto utilizaremos el símbolo " ' " para denotar la negación lógica, por ejemplo, A' denota la operación lógica NOT de A.
- Si varios operadores diferentes aparecen en una sola expresión booleana, el resultado de la expresión depende de la procedencia de los operadores, la cual es de mayor a menor, paréntesis, operador lógico NOT, operador lógico AND y operador lógico OR. Tanto el operador lógico AND como el OR son asociativos por la izquierda. Si dos operadores con la misma procedencia están adyacentes, entonces se evalúan de izquierda a derecha. El operador lógico NOT es asociativo por la derecha.
Utilizaremos además los siguientes postulados:
  • P1 El álgebra booleana es cerrada bajo las operaciones AND, OR y NOT
  • P2 El elemento de identidad con respecto a ·  es uno y con respecto a +  es cero. No existe elemento de identidad para el operador NOT
  • P3 Los operadores ·   y + son conmutativos.
  • P4 ·   y + son distributivos uno con respecto al otro, esto es, A· (B+C) = (A·B)+(A·C) y A+ (B·C) = (A+B) ·(A+C).
  • P5 Para cada valor A existe un valor A' tal que A·A' = 0 y A+A' = 1. Éste valor es el complemento lógico de A.
  • P6 ·   y + son ambos asociativos, ésto es, (AB) C = A (BC) y (A+B)+C = A+ (B+C).
Es posible probar todos los teoremas del álgebra booleana utilizando éstos postulados, además es buena idea familiarizarse con algunos de los teoremas más importantes de los cuales podemos mencionar los siguientes:
  • Teorema 1: A + A = A
  • Teorema 2: A · A = A
  • Teorema 3: A + 0 = A
  • Teorema 4: A · 1 = A
  • Teorema 5: A · 0 = 0
  • Teorema 6: A + 1 = 1
  • Teorema 7: (A + B)' = A' · B'
  • Teorema 8: (A · B)' = A' + B'
  • Teorema 9: A + A · B = A
  • Teorema 10: A · (A + B) = A
  • Teorema 11: A + A'B = A + B
  • Teorema 12: A' · (A + B') = A'B'
  • Teorema 13: AB + AB' = A
  • Teorema 14: (A' + B') · (A' + B) = A'
  • Teorema 15: A + A' = 1
  • Teorema 16: A · A' = 0
Los teoremas siete y ocho son conocidos como Teoremas de DeMorgan en honor al matemático que los descubrió.
Características:
Un álgebra de Boole es un conjunto en el que destacan las siguientes características:
1- Se han definido dos funciones binarias (que necesitan dos parámetros) que llamaremos aditiva (que representaremos por x
+ y) y multiplicativa (que representaremos por xy) y una función monaria (de un solo parámetro)  que representaremos por x'.
2- Se han definido dos elementos (que designaremos por 0 y 1)
3- Tiene las siguientes propiedades:
Conmutativa respecto a la primera función: x + y = y + x
Conmutativa respecto a la segunda función: xy = yx
Asociativa respecto a la primera función: (x + y) + z = x + (y +z)
Asociativa respecto a la segunda función: (xy)z = x(yz)
Distributiva respecto a la primera función: (x +y)z = xz + yz
Distributiva respecto a la segunda función: (xy) + z = (x + z)( y + z)
Identidad respecto a la primera función: x + 0 = x
Identidad respecto a la segunda función: x1 = x
Complemento respecto a la primera función: x + x' = 1
Complemento respecto a la segunda función: xx' = 0


Propiedades Del Álgebra De Boole
  1. Idempotente respecto a la primera función: x + x = x
  2. Idempotente respecto a la segunda función: xx = x
  3. Maximalidad del 1: x + 1 = 1
  4. Minimalidad del 0: x0 = 0
  5. Involución: x'' = x
  6. Inmersión respecto a la primera función: x + (xy) = x
  7. Inmersión respecto a la segunda función: x(x + y) = x
  8. Ley de Morgan respecto a la primera función: (x + y)' = x'y'
  9. Ley de Morgan respecto a la segunda función: (xy)' = x' + y'
Función Booleana
Una función booleana es una aplicación de A x A x A x....A en A, siendo A un conjunto cuyos elementos son 0 y 1 y tiene estructura de álgebra de Boole.
Supongamos que cuatro amigos deciden ir al cine si lo quiere la mayoría. Cada uno puede votar si o no. Representemos el voto de cada uno por xi. La función devolverá sí (1) cuando el numero de votos afirmativos sea 3 y en caso contrario devolverá 0.
Si x1 vota 1, x2 vota 0, x3 vota 0 y x4 vota 1 la función booleana devolverá 0.
Producto mínimo (es el número posible de casos) es un producto en el que aparecen todas las variables o sus negaciones.
El número posible de casos es 2n.
Siguiendo con el ejemplo anterior. Asignamos las letras A, B, C y D a los amigos. Los posibles casos son:
Votos         Resultado
ABCD
1111              1
1110              1
1101              1
1100              0
1011              1
1010              0
1001              0
1000              0
0111              1
0110              0
0101              0
0100              0
0011              0
0010              0
0001              0
0000              0
Las funciones booleanas se pueden representar como la suma de productos mínimos (minterms) iguales a 1.
En nuestro ejemplo la función booleana será:
f(A,B,C,D) = ABCD + ABCD' + ABC'D + AB'CD + A'BCD
Diagramas De Karnaugh
Los diagramas de Karnaugh se utilizan para simplificar las funciones booleanas.
Se construye una tabla con las variables y sus valores posibles y se agrupan los 1 adyacentes, siempre que el número de 1 sea potencia de 2.
En esta página tienes un programa para minimización de funciones booleanas mediante mapas de Karnaugh.

Teoremas Básicos del álgebra Booleana


TEOREMA 1
Ley Distributiva
A (B+C) = AB+AC
A
B
C
B+C
AB
AC
AB+AC
A (B+C)
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
1
0
1
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
1
1
1
TEOREMA 2
A+A = A
AA = A
A
A
A+A
0
0
0
1
1
1
A
A
AA
0
0
0
1
1
1
TEOREMA 3
Redundancia
A+AB = A
A
B
AB
X
0
0
0
0
0
1
0
0
1
0
0
1
1
1
1
1
A (A+B) = A
A
B
A+B
X
0
0
0
0
0
1
1
0
1
0
1
0
1
1
1
1
TEOREMA 4
0+A = A
Equivalente a una compuerta OR con una de sus terminales conectada a tierra
A
B=0
X
0
0
0
1
0
1
1A = A
Equivalente a una compuerta AND con una de sus terminales conectada a 1
A
B=1
X
0
1
0
1
1
1
1+A = 1
A
B=1
X
0
1
1
1
1
1
0A = 0
A
B=0
X
0
0
0
1
0
0





Referencia:

No hay comentarios:

Publicar un comentario